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Exact relations of two types in the statistical theory of fully developed homogeneous isotropic
turbulence in an incompressible fluid were found. The relations of the first type connect two-point
and three-point objects of the theory which are correlation functions and susceptibilities. The
second types of relations are the “frequency sum rules” which express some frequency integrals from
“fully dressed” many-point objects (like vertices) via corresponding bare values. Our approach is
based on the Navier-Stokes equation in quasi-Lagrangian variables and on the generating functional
technique for correlation functions and susceptibilities. The derivation of these relations uses no
perturbation expansions and no additional assumptions. This means that the relations are ezact in
the framework of the statistical theory of turbulence. We showed that “a many-point scaling” gives
birth to the “global scaling.” Here “many-point scaling” is the assumption that two-point, three-
point, etc. objects of the theory of turbulence are uniform functions in the inertial interval and may
be characterized by some scaling exponents. Under this assumption the only global scale-invariant
model of fully developed turbulence suggested by Kolmogorov [Dokl. Akad. Nauk SSSR 32, 19

MARCH 1993

(1941)] is consistent with the exact relations deduced.

PACS number(s): 47.10.+g, 47.27.Gs

INTRODUCTION

Exact relations play an important role in the study of
such a difficult and interesting problem as hydrodynamic
turbulence. They help us to formulate and to control
phenomenological models and hypotheses as well as to
check the validity of approximations in analytical theories
of turbulence. Moreover, exact relations give a method
to check physical experiments and computer simulations
of hydrodynamic turbulence.

In this paper we derive two families of exact relations in
the statistical theory of fully developed homogeneous tur-
bulence of an incompressible fluid. The theory deals with
many-point many-time correlation functions of velocity
field and nonlinear susceptibilities (response functions of
this field to a vanishing small external force). The sim-
plest two-point objects are the double velocity correlator
F and the Green’s function G. The first family consists
of relations between the n-point and (n + 1)-point ob-
jects. A well-known example is the relation between the
time derivative of n-point correlators and (n + 1)-point
correlators. In Sec. IV we derive some other relations of
this family.

The second family consists of “frequency sum rules.”
These are relations between integrals over frequency
(with some weight) of “dressed” many-point objects and
corresponding “bare” values. An example of such a rela-
tion is [ G(k,w)dw = im. In Sec. V we derive relations
of this family for three-point objects and present a reg-
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ular procedure for deriving corresponding relations for
(n > 3)-point objects. Note that these relations reflect
properties of the interaction (expressed via the bare ver-
tex for the Navier-Stokes equations) and the causality
principle.

The key word ezact in the study of hydrodynamic tur-
bulence has various meanings. We claim that relations
obtained in this paper are exact in the framework of
the statistical theory of turbulence. Actually the sta-
tistical approach is based on the assumption that tur-
bulent solutions of the Navier-Stokes equations do exist
in the statistical sense, which is the existence of corre-
lation functions and susceptibilities. For example, the
Kolmogorov famous relation [1] between the third mo-
ment is exact in the same sense. Indeed, in this paper
we used (see Sec. IIT) the functional integration approach
for a statistical description of turbulence which is based
on the Navier-Stokes equations and the above-mentioned
assumption of existence of their statistical solutions. No
perturbation expansions were used. No simplifying as-
sumptions concerning the value or character of the inter-
action and no additional hypotheses were made.

In our approach the sweeping effect was elimi-
nated from the very beginning with the help of quasi-
Lagrangian variables [2, 3] suggested by L’vov. As a re-
sult, the external scale of turbulence (which is the size
of the largest eddies, those containing the most energy)
is absent (in the explicit form) in the equations of the
theory and the theory is scale invariant. Therefore it is
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natural first of all to look for a scale-invariant solution
of these equations. Accordingly we assumed that two-
and three-point (in space and time) objects [like second
velocity correlators F'(k), third velocity correlator

F3(k1, ko, k3), (1)

the Greens function, etc.] are uniform functions in the in-
ertial interval and may be characterized by some scaling
exponents. We will call such a situation many-point scal-
ing. It is necessary to distinguish the many-point scaling
from local scaling [4] in multifractal models of turbulence
[5,6]. The local scaling is in fact “two-point simultane-
ous scaling.” This is an assumption that the simultane-
ous n-order moments of velocity differences D™ (r) (the
two-point correlation functions) are uniform functions in
the inertial interval with some exponents {,. Obviously
two-point simultaneous scaling is a weaker assumption
than many-point scaling. We showed that many-point
scaling is consistent with the exact relation deduced if
scaling exponents are related according to the famous
Kolmogorov-Obukhov phenomenological model of turbu-
lence (KO model [7,8]) with {, = n/3. In the KO concept
of turbulence there is the global scaling, characterized by
the only scaling exponent of velocity field ¢; = 1/3.

Apart from a many-point scaling leading to the global
scaling, one may expect solutions of greater complex-
ity consistent with the multifractal models of turbulence
[5, 6]. We cannot reject this possibility, but postpone
the question about correspondence between multifractal
models of turbulence and the Navier-Stokes equation to
the future.

I. BASIC EQUATIONS

The modern statistical theory of hydrodynamic turbu-
lence began with the papers by Kraichnan [9] and Wyld
[10], who suggested using a space distributed force f(¢,r)
to simulate excitation of stationary space-homogeneous
developed hydrodynamic turbulence. According to the
Kolmogorov-Obukhov universality hypotheses [7, 8] in
the limit of a large Reynolds number the properties of
the fine-scale part of turbulence (in the inertial interval
of scales) will not depend upon details of turbulence ex-
citation, i.e., on the type of boundary conditions for the
fluid flow or on characteristics of the driving force f(¢,r).
Therefore one can suppose that the force f(t,r) is a ran-
dom force with Gaussian statistics; it does not excite the
mean flow: (f(¢,r)) = 0, and its double correlator

(fit,r)fi(t,x')) = Dy (t — t',x — x') 2

depends only upon the coordinate and time difference,
which is the condition for the turbulent state to be ho-
mogeneous and stationary. Thus we shall start with the
basic model of developed turbulence which is determined
by the Navier-Stokes equation with the random force (2)
in an unbounded region:

~6—v-+(v~V)v+VP=vAv+f,

ot
Vv=0, Vf=0. (3)

Here v(t,r) is the velocity field of an incompressible fluid,
P is the pressure, v is the kinematic viscosity, and we
have set the mass density p = 1.

In the inertial interval v and D may be taken to be
Z€ro.

A. Quasi-Lagrangian approach to theory of
turbulence

The problem of developed turbulence involves two
completely different interactions. The dynamic interac-
tion of turbulent eddies with the characteristic scale 1/k
(k eddies) leads to an exchange of energy between eddies
and is responsible for the energy distribution among the
scales. The sweeping interaction is simply the sweeping
of small k£ eddies without any shape variation by the ve-
locity of the largest eddies (of the energy containing scale
L). In the inertial interval of scales (kL > 1) the sweep-
ing interaction is substantially stronger than the dynamic
one. However, the sweeping interaction does not change
the energy of k eddies. In order to overcome the masking
effect of sweeping it is convenient to eliminate sweep-
ing from the very beginning by an appropriate choice of
variables. To do this we shall use the quasi-Lagrangian
velocity u(to,rolt,r) (see [2, 3]):

v(t,r) =u(to,rolt,r — R), (4)

R = R(to,rolt) = / u(to, ro|7,ro)dT . (5)

to

Here the function u(tg, roft,r) has additional arguments,
the marked time to and the coordinate of the marked
point rg. If the velocities of at all points are uniform,
the velocity u(to, ro|t, r) naturally coincides with the La-
grangian velocity of fluid particles along the actual trajec-
tory R(to, ro|t). As the real velocities in some volume of
size 1/k vary only slightly, the velocities u(to, ro|t, r) will
differ little in this volume from Lagrangian ones. There-
fore it would be reasonable to call them gquasi-Lagrangian
velocities (¢L velocities).

It should be stressed that the relations (4) and (5)
contain no approximations. All physical considerations
reaffirm such a choice of variables as being reasonable,
promising success for the theory which will make use of
them. The formulas (4) and (5) represent a precise rela-
tionship between Eulerian and quasi-Lagrangian veloci-
ties. One can adequately build the theory in terms of gL
velocities. They are as much a physical reality as Eule-
rian or Lagrangian velocities, and may be experimentally
measured and effectively used in numerics.

An equation for the gL velocity may be derived by
substituting (4) into the Navier-Stokes equation (3)

Ougy

Bt + Vﬁ[(Uﬁ - uo,g)(ua - uo,a)] + VQP

= vAug + fo, Vaua=0. (6)

Here u,, P, and fa are qL variables depending on ¢, r
and also on tg, ro, with the relations between P and P,
f and f are similar to that between v and u. The value
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Ug,q in (8) is uq(to,rolt,ro). This equation differs from
the Navier-Stokes equation in that the term ug subtracts
the sweeping in the marked point ry. Note that sweeping
persists at all other points r # rg.

Equation (6) depends on the coordinate rq explicitly,
via the last argument in ug,o. Therefore the mathemat-
ical formulation of the problem loses its spatial homo-
geneity. However, Eq. (6) does not contain tg explicitly,
so homogeneity in time does remain and one can omit
the index to when describing a steady turbulent state.

The next important step, conventional investigations
(see, e.g., [11]), is to transform to the k representation,

1 [d3qd®p

that is, to expand the turbulent fluid velocity field in
plane waves:

u(rolt, k) =/dr exp(—ik - r)u(rolt,r) . (7

Such an expansion does not readily reflect the qualitative
knowledge of hydrodynamic turbulence as a system of
interacting localized eddies. On the other hand, it will
enable us to use the detailed and powerful technique of
analysis of the perturbation series in the k space. The
equation of motion for u(ro|t, k) follows from (6):

z(% + uk2> U (rolt, k) = 3 anﬁv(rollﬁ q, P)ug(rolt, —q)u~(rolt, —p) + ifa(k) , (8)

kakgks

Vapy(rolk;q, p) = (2m)3 (k,yéag + kgbay — 2

+6(k) exp[i(q + p) - ror].

The main technical difference between the quasi-
Lagrangian and the conventional (in terms of Eulerian
velocity) description of turbulence is that the wave vec-
tor k is no longer preserved in the dynamic vertex V
since it is not proportional to 6(k + q + p). This is a
result of the absence of spatial uniformity of the theory
due to the explicit dependence of the gL velocity (5) on
the coordinate of the marked point ro where sweeping is
precisely eliminated. This is a very high but necessary
price for the elimination of the sweeping from the the-
ory. Formally the absence of the sweeping is reflected in
the property of locality of the vertex V in k space: in
asymptotic regimes where one of the wave vectors (k, g,
or p) goes to zero, the vertex V tends to zero. To make
it clear we have saved the last term in (9) which really
gives no contribution. Note that initial Eulerian vertex
[the first term in (9)] is proportional to k& but does not
tend to zero if q or p goes to zero.

B. Short notations

The analytical expressions in our treatment are rather
cumbersome. In order to make these more observable we
introduce the following short notation: the asterisk “x”.
Appearing between two functions of z = (¢,r) it desig-
nates summation over repeated indices plus integration
over the corresponding time-space variables. For exam-
ple, in the expression

’ " " /
Aaa’ﬁﬂ’ = Baa’a"(xax T ) * Ca"ﬁﬁ’(-r 7$1’x1)

it designates summation over o” and integration
Jdt” d3r”. In the (t, k) representation one has to perform
integration over the time and wave vector corresponding
to the repeated indices: [dt” [ d3¢"/(2m)3.

25 )i+ 0+ ) — 8(k + a) explip 7o) — 8k + ) explia  ro)

(9)

Using this notation one may rewrite the ¢L equation of
motion (8) in the inertial interval (v and f are omitted)
as

.0 1

z—a—zua = 5Vapy ¥ Ug * Uy . (10)
Note that vertex V here should be considered as a func-
tion of times ¢, t/, and t” corresponding to three indices
a, B, and ~. It is clear that V'(¢,¢',t") o< 6(t —t')6(t —t").
Comparing (8) and (10) one may formulate the follow-
ing rule: wave vectors which belong to different functions
and correspond to the same repeated index have oppo-
site signs in the arguments of these functions. In this
example q, p are arguments of V and —q, —p are argu-
ments of ug, uy. In the (w,k) representation instead of
integration over the times one has to use the following
rule for the frequencies: each propagator depends on wj,
each vertex V is proportional to 6(w; +w; +wy), and one
has to perform all of the integrations [ dw;/2m. This is
conventional for diagrammatic techniques.

II. DIAGRAMMATIC APPROACH

The diagrammatic perturbation theory suggested by
Wyld [10] is a regular procedure for investigating hydro-
dynamic turbulence in the framework of the basic model
(3). This technique was later generalized by Martin, Sig-
gia, and Rose [12], who demonstrated that it may be used
to investigate the fluctuation effects in the low-frequency
dynamics of any condensed-matter system, fluid or not.
In fact this technique is also a classical limit of the
Keldysh diagrammatic technique [13] which is applicable
to any physical system described by interacting Fermi
and Bose fields. Zakharov and L’vov [14] extended the
Wyld technique to the statistical description of Hamilto-
nian nonlinear-wave fields including hydrodynamic tur-
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bulence in the Clebsch variables [3]. The diagrammatic
perturbation theory of the Wyld type for the gL equation
of motion (6) was developed by Belinicher and L’vov [2].

A. Basic objects: correlators and susceptibilities

The natural objects in the Wyld diagrammatic expan-
sion are dressed propagators which are the Green’s func-
tion Gop and the double correlator Fog. The former is
defined as the susceptibility of the average qL velocity
field u, to a force ¢g(t,r) which would be added to the
right-hand side of the equation of motion (10) (the nota-
tion ¢ was introduced to distinguish it from the external
force f which drives the turbulence). Namely, for a van-
ishing small force 8¢

6 (ua(rolt, r1)) '

Gap(rolt,r1,r2) = —1 11
ap(rolt, T1,T2) 565(0,12) (11)
The latter is the double correlator of the gL velocity,
Faﬁ(rolt, rl,rz) = (ua(r0|t, r1)u5(ro|0,r2)) . (12)

When considering a state which is stationary in time
and homogeneous in space, it is useful to pass into the
(w, k) representation:

Gaop(rolw,q1,q2) =/ dtd®r1d3ryGap(rolt, r1,12)

x exp(iwt —iqy - r1 —iqg - r2) .
(13)

An analogous representation for the double correlator is
Fap(rolo,as,a) = [ dtdrad*raFap(rolt,ry,r2)

x exp(iwt — iqy - r1 — iqg - r2) .
(14)

We recall some properties of the propagators:

e The propagators (11) and (12) do not depend on co-
ordinates rq, ri1, and r, separately but only on the two
differences (r; — rg) and (rz — ro) [3]. This reflects the
space homogeneity of the initial problem. It allows us
to omit the index rg in the all of following formulas by
putting the origin in this point.

e The simultaneous double correlators of gL velocity F
and Euler velocity Fg are identical [3]:

Faﬁ(rolt = 0,1‘1,1‘2) = FE,ag(t =0,r; — !'2) . (15)
Obviously the Euler correlators in the r representation
Fg, depend only on the coordinate difference r; —r3. In
the k representation it means that

Fg,ap(k1, k2) = (27)3 Fg,ap5(k1)6(k: + ko) .

It follows from (14) that the simultaneous correlator is
the integral over frequency of the correlator in w represen-
tation. As a result, one obtains an important frequency
sum rule for the double gL correlator [2):

1797

/ %Faﬁ(rolw,kl,kz) — (2m)®Fe(k)b(k; + kz).  (16)

B. Dyson-Wyld equations for propagators

Using the Wyld technique one may derive [10,14] a sys-
tem of equations for the dressed propagators, known as
the Dyson-Wyld equations. In our short notation these
may be written in the inertial interval as

U.)Gag(w, qi, q2) - Ea‘y(wv qi, q3) * G‘Yﬂ(wa —qs, CI2)
= (27)%6(q1 + Q2) Pap(q1), (17)

Fop(w,q1,q2) = — Gay(w,q1, —q3) * ®,5(w, q3,q4)

*G5ﬁ(_w7 —q4, Q2) . (18)

Here P,5(q) = 6ap — gagqp/q? is the transverse projector.
The mass operators ¥ and ® are the self energy and
intrinsic noise functions, respectively. Let us stress that
the expressions (17), (18) should be considered as exact
relations in which the terms X, ® are supplied by the
interaction.

In the framework of perturbation theory the functions
3, ® are given by infinite series of one-particle irreducible
blocks:

Y=%o+3¥4+X6+:, P=P3+P4+Ps+---.

In these expressions ¥y, is a functional of 2p vertices V, p
double correlators F' and 2p—1 Green’s functions G; @2,
is a functional of 2p vertices V, p + 1 correlators V', and
2(p — 1) functions G. The conventional way to deduce
such a series may be found in [10, 12, 14, 15]. The Wyld
perturbation series appears to be similar to the Feynman
perturbation series in quantum electrodynamics [16].

At high frequencies the corrections provided by the in-
teraction are small. Therefore the asymptotic expression
of the Green’s function for w — oo will be

Gaﬂ(w) qi, Q2) - GO,aﬁ(w1 q1, Q2) y
(19)
Go,ap(w, a1,q2) = (27)%6(a1 + az)w ™ Pag(a) -

Here Gj is the bare Green’s function. The above relation
follows from (17) by putting ¥ = 0 in this limit.

III. GENERATING FUNCTIONAL

In our paper we use functional integration techniques
which give the same perturbation expansions as sug-
gested in [10, 12]. We shall use the functional represen-
tation of these diagrammatic series in order to analyze
them as a whole, without any truncations. We shall as-
sume familiarity with the technique of functional integra-
tion, which in this context originates with the well-known
ideas of Feynman [17]. A textbook description of func-
tional integration methods closely related to the present
problem may be found in the book by Popov [18]. In
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this section we explain the relation between the original
Wyld expansion and the functional integral representa-
tion of the propagators. The representation of correlation
functions appearing in the Wyld technique in the form of
functional integrals was developed by de Dominicis [19]
and Janssen [20].

A. Effective action in gL approach

Following the work by de Dominicis and Peliti [21] we
may assert that the correlation functions of the solutions
of (6) are generated by the following functional:

Z(l,i) :/Du’Dpexp(iI+/dtdr(l-u—l—i-p)).

(20)
Here p is the auxiliary vector field conjugated to u (Vp =
0) and the effective action is I = Iy + I,y where

Ou )
Iy= /dt dr (paTta- + vVgpa Vaua + zpaDaﬁpg) )
(21)

Iing = — f dt dr Vgpa('u,a - 'U,an)(’u,g - U‘o‘ﬁ) . (22)

Here the integration is performed over all functions
u(t,r) and p(¢,r) for fixed coordinate of marked point
ro. The variables 1(¢,r) and i(t,r) are arbitrary functions
of time ¢t and vector . The coefficients of the expansion
of Z in I(¢,r) and 1(¢,r) are the correlation functions of
the fields u(rp|t,r) and p(rolt,r).

Note that in the expression of Ref. [21] there appeared
a functional determinant which may be represented in
the form of an integral over auxiliary Fermi fields (22,
23]. It can be demonstrated that in the present case the
determinant is equal to unity because of causality prop-
erties of the Green’s functions (which will be discussed
below). Therefore we shall omit the determinant.

B. Propagators

The first term in the expansion of Z in I(¢,r), i(t,r)
has the following form:

zZ® =/dt1dr1 dtadra| 3la(t1,11) (Ualrolts, r1)us(rolts, ra)) Ia(t2, ra)

+a(t1,11) (ua(rolts, r1)ps(rolts, 12)) Ip(ta, r2)] ,

where the angular brackets () mean an average with the
weight exp(i]). Note that (uqug) is the double correlator
of qL velocity Fop (12), whereas

Gop(rolt,r1,r2) = — (Ua(rolt, r1)ps(0,12)) (24)

is the Green’s (response) function of the system. Indeed,
if an additional external force ¢z is added to the right-
hand side of Eq. (6), the effective action I would acquire
a new term —¢@gpp and therefore (u) would be

(e (rolts, 1)) = —i/ dt drs (e (rolts, r1)ps(ta, T2))
X¢g(t2,r2) - (25)

The double correlator (popg) is exactly zero and therefore
does not appear in the technique.

J

(23)

By expanding the functional (20) with respect to the
action Iin¢ (22) and performing the Gaussian integration
in all the terms one can reproduce the Wyld perturbation
series for the Green’s function and double correlator men-
tioned above. The technical details of such a procedure
may be found in the book by Popov [18]. We have thus
established the connection between the two approaches
and are ready to make use of the second formalism.

C. Definitions

We are going to derive some relations between many-
point correlation functions or between vertices. First we
introduce designations for the three-point (dressed) ver-
tices. One of the vertices I is connected with the follow-
ing three-point correlation function:

(ua(t1,r1)ps(ta, r2)py(t3,r3)) = Gas(ts — ta,r1,r4) * Dsne(ta, ra,ts, rs,te, r's) (26)
*Gng(ts — t2,r5,12) * Gey(te — t3, 16, T3). (27)

Passing into Fourier representation, we get

Lopy(t1,11,t2,T2,t3,13) = (2m)~ 1! / dwy dws dws d*q; d3ga d3qaé(w1 + w2 + wa)

X exp(+iwity —iqy - Ty + dwats — 1qQa - o + iwsts — iq3 - r3)
Xraﬂv(wlaqlaw27q2,w3aq3) (28)

The bare value of the vertex I'agy is no other than the interaction vertex (9). The vertex I'ys, may be represented

as an infinite series of one-particle irreducible diagrams.
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To present the definitions of the type of (27) in a more compact form we shall omit the arguments of the functions.
Therefore the definition (27) will be rewritten in the following form:

(uapppy) = Gas * Lsne * Gpp * Gey

(29)

This expression may be considered as a definition of I's,¢ both in the real and in the reciprocal spaces.
In addition to the vertex I'o3, two extra three-point vertices exist. We introduce these vertices (which we designate

A and Y) in accordance with the following relations:

(uau,@p,y) = Ggs * ng * A6n£ * Gg,y - (Gag * Fﬂ"? * +F,5 % G’gn*)l"g,?g * 057 R (30)

(UaUgly) = (Gas * Fagn * Foyg x +Ggs * Fo * Fog % +Goys % Fop * Fgex)Tope
~(Gos * Gpn * Foyg x +Ggs * Gy % Foe % +Grs % G * Fgex)Asne + Gas * Ggn * Gye * Yape . (31)

The above definitions are constructed so that the bare
values of the vertices A, Y are equal to zero. They appear
only as a consequence of the interaction.

IV. RELATIONS FOR TWO-POINT
AND THREE-POINT OBJECTS

The representation of correlators in the form of func-
tional integrals enables us to deduce some exact relations
for the correlators. Let us illustrate the idea with a sim-
ple example. Consider the correlator

<l—u (t2,r2)
éua(tl,rl) B\l2, T2 )

where I is the effective action. The correlator may be
written as the following functional integral:

oI
/Du Dp exp(iI)WUg. (32)
It is clear that
61 bexp(il)
exp(il) Sus = i Bu

Substituting the expression in the functional integral and
performing integration by parts leads to the conclusion
that the integral (32) is equal to i6,6(t1 — t2)6(r1 —r2).
Therefore

61 '
<muﬁ(t2,r2)> = 164p6(t1 — t2)6(r1 —ra) .
(33)

Let us clarify the essence of the deduced relation. For
this purpose we substitute the effective action I by the
expression Iy + I;n; where the term with the time deriva-
tive in Iy was saved only in accordance with the above
discussion. Then we find

81 . .
<Wu5> = — (Paug) + iVyan * * (Dyuyug) , (34)

where p = Op/0t. Here (and below) the number of aster-
isks corresponds to the number of integrations over space-
time variables. We see that the correlator on the left side
of (33) is divided into two parts: a two-point block and a
three-point block. The two-point block is the time deriva-

r

tive of the Green’s function and the three-point block is in
accordance with (30) reduced to a combination of propa-
gators and triple dressed vertices. Comparing the result
with the definition (17) we deduce

Eaﬁ = Va'yb‘ * G,yg * *an * anﬁ
=3 Varys * Goyg * Gy x Aeng - (35)

This is none other than the well-known relation of the
Dyson type between the self-energy function, propaga-
tors, and dressed vertices [10, 16]. Let us stress that
the relation, which is usually derived in the framework
of the perturbation expansion, was derived here using
the functional integration technique and no assumptions
concerning the character of interaction or features of the
perturbation expansion were made.
Similarly the following relations may be deduced:

(oot £2) ) = i6apd(ts ~ 2)o(rs —1a),
(37)

<5§€Z‘,‘n—>“ﬂ‘”"’2)> =0 (38)

Equation (36) is satisfied as a consequence of causality
properties of the Green’s function G (see the discussion
below). Equation (37) is equivalent to the relation (35).
Equation (38) after the substitution I = Iy + Iiy gives

. )
(Taup) + EVam * % (upuyug) = 0. (39)

This relation is trivial and immediately follows from (10).
Using now (31), we may deduce the following exact ex-
pression for the internal noise function:

@ = —3Varys * Fy * xFop * Tenp
+2Va75 * G’Yf * *an * Af'ﬂﬂ
~Vons ¥ Gye * %Ggn * Yepg (40)
which is extracted by comparing (17), (18), (35) and the
relation (39). This relation is similar to (35). Note again

that the procedure of its derivation does not use the per-
turbation approach.
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The above procedure may be generalized. Consider the
three-point object

61
<m“ﬁ(t2’r2)%(ts,r3)> :

Performing the same integration by parts we deduce

61
<%:u5u.y> = 0 . (41)
Using now the substitution I = Iy + Ijnt, we find
. A
(Gaugue) + §Vam * ok (UpUyugle) = 0. (42)

This is the relation between the three-point and the four-
point objects. Other connections between the three-point
and the four-point objects may be derived by varying of
fields u, p and derivatives of I in the triple average of the
type of (41).

It is clear that analogously relations between many-
point objects may be deduced.

V. CONSEQUENCES OF ANALYTICAL
PROPERTIES

In this section we intend to exploit the analytical prop-
erties of the Green’s function to deduce some “sum rules.”
We have noted that the Green’s function is the suscep-
tibility of the system. As a consequence of the causal-
ity principle the function G(t) has to be zero for ¢t < 0.
Therefore in the w representation the Green’s function is
analytic in the upper half-plane.

The simplest of the “sum rules” has the following form:

+oo
dw 7
/ E;Gaﬂ(%m,fh) = —5(277)35(% + q2) Pap(ai).

(43)

To prove the relation let us deform the contour of integra-
tion over w in the upper half-plane which is the region of
analyticity of the function G(w). Namely we shall deform
the contour so that it will go far enough from the origin.
Then at each point of the contour |w| will be large and
the asymptotic value of the Green’s function (19) may be
used. Substituting the value into the integral we arrive
at the result (43).

The method of deducing (43) may be extended to more
complicated cases. For this purpose nonlinear suscepti-
bilities of the system should be considered. Namely if
the external force ¢, is added to the right-hand side of
Eq. (10) the average value (u) appears, which can be
represented as a series over ¢q:

(Ua) = —i (UaDp) * Gp — 5 (UaDpDy) * dp * by + -+ .
(44)
This series generalizes the expression (25) determining

the linear response of the system.

The expression enables us to assert that as
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a consequence of causality principle the correlator
(ua(t1)pp(t2)p~(t3)) should be equal to zero if ¢t < to
or t; < t3. Recalling now the definition (29) and
the causality properties of the Green’s function we con-
clude that the vertex I'og, possesses the same property:
Tapy(t1,t2,t3) =0, if t; <ty or t; < t3. It means that
the function I'ygy in the Fourier representation deter-
mined by (28) possesses an analytical property. Namely
the function

Faﬂ’y(wa w1, —wW — Ldl) (45)

is analytic in the upper w-half-plane.

Now we may prove the validity of the relation (36).
After the substitution I = Iy + I;y¢ the quantity on the
left-hand side of (36) reduces to a combination of the
triple vertex I' and Green’s functions G (since the corre-
lator (pp) is equal to zero). It is easy to check that as a
consequence of noted properties of I' and G the combi-
nation is equal to zero.

The analytical properties of I' and G enable us to de-
duce a new sum rule. Let us consider the integral

w—dfml‘am (w,w1, —w — w1). (46)
The quantity 410 in the denominator means as usual that
the path of the integration should go above the pole of
(w + 40)~1. Since the integrand here is analytic in the
upper w-half-plane the contour of integration may be as
above deformed to go far enough from the origin. Then
the vertex '3y may be replaced by its bare value V3,
for all points of the integration curve (at high frequencies
the corrections to the vertex due to the interaction are
negligible). Therefore the integral appears to be equal to
—imVysy. Separating the function (w+i0)~! into its real
and imaginary parts we conclude

Vapy =Tapy(w = 0,w;, ~w:)

i [ dw
+;][ :}—Fag,,(w,wl,—w —-wi) . (47)

The crossed integral designates here the principle value
of the integral. This equation will be very important for
us further on because it relates the dressed vertex I and
bare vertex V. It is possible to derive similar relations
for higher-order vertices.

VI. SCALING BEHAVIOR

Now we are going to find some physical consequences
of the deduced exact relations. We shall examine the
scaling solution for correlation functions describing the
turbulence. Recall that such a solution for the Euler
variable v cannot exist because of sweeping which in the
framework of a diagram technique leads to infrared di-
vergences. However, for gL variables a scaling solution
exists which is connected with the locality of the vertex V'
in k space (see Sec. I ) enabling excellent convergence of
integrals both in infrared and in ultraviolet regions (2, 3].
Since single-time correlation functions of Euler and ¢L
velocities coincide (see Sec. II ) the dynamic scaling for
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qL variables supplies the scaling behavior of single-time
correlation functions of Euler velocities observed experi-
mentally (see, e.g., [11]).

A. Scaling of two-point gL propagators

Scaling implies that the propagators for gL variables
G(t,r1 — r2), F(t,r1 — r2) introduced by (12) and (24)
are homogeneous functions

G(N\t, A(r1 —r2)) = ATAG(t, (ry — 12)),
(48)

F(/\zt, /\(rl - rz)) = )\yz_dF(t, (r1 — !‘2)) .
Here d = 3 is the dimension of the space, z is the dynamic
exponent, and y;, y2 are static exponents characterizing
the scaling behavior of single-time propagators. In the

following we shall use more compact notation instead of
(48), (52):

GV~ Fap¥2=d %, (49)
The convergence of all integrals in expressions contain-

ing correlation functions of gL variables means that the
characteristic scales and time intervals in the integrals
are of the order of external scales and time intervals. For
example, the characteristic frequency w in the integral
(43) is determined by the values of qi, qz. If they lie in
the inertial interval then in accordance with (49) w ~ g¢*.

Hence the relation (43) leads to the conclusion
y1=0. (50)

As a consequence of (17), (18), and (50) we find that in
the (¢, r)-representation
T~ ,,.—d-—2z’ P ~ ,,.—d-2z+yg . (51)

Note that the scaling dimensions of the two terms on the
left-hand side of (17) are the same.

B. Scaling of three-point gL objects

Assume that the three-point gL objects (like ', A, and
Y') are homogeneous functions of their argument in the
inertial interval [similar to the case of two-point objects

(48)]

F()\z(tl — tg), /\z(t2 — t3), )\(rl — rz)A(rz — r3)) = /\y3“22‘2dF((t1 — tz), )\z(tz — t3), (r1 — rz)(rg — r3)) y (52)

etc. for any relation between the arguments.
One may introduce also the exponents of vertices A,
Y, taken in the (¢,r) representation

A~ Ty4—2z—2d’ Y ~ ry5~2z—2d . (53)

Up to now scaling exponents of two, three, four, etc.
objects one can consider as independent. We call such
an assumption as many-point scaling.

It follows from (47) that the exponent y3 of the dressed
vertex I' coincides with the exponent of the bare vertex
V. It means that under the situation of many-point scal-
ing the exponent of the interaction is not renormalized.
Now it follows from (9) that

yz3=-—1. (54)

C. Scaling relations

Comparing the scaling dimensions of different terms of
(30), (31) we conclude that

va=y2—1, ys=212—1. (55)
The equalities (35), (40) are now satisfied if
y2+2z=d+2. (56)

This is the first basic scaling relation. It was proved order
by order in the framework of perturbation expansion [2].

The second scaling relation in the inertial interval of
scales may be derived from (39). The scaling exponent of
the triple correlator (uuu) may be extracted from (31),

[
(49), (50), (53), (54), and (55):
(uuu) ~ p2yrtz-1-2d (57)

Taken into account also (9), (10) we conclude that the
relation (39) leads to the equation

2y +2z=2+2d. (58)
Comparing now (56) and (58) we find
z=%, yp=d+2=1. (59)

These are the Kolmogorov’s value of indices.

Now using relations of the type of (39), (42) we may
find the scaling indices of many-point correlators. For
example,

(u(ry) u(ry) - ulry)) ~ /3. (60)

This is the set of well-known relations given by Kol-
mogorov (7] and Obukhov [8] in their initial KO phe-
nomenological model of turbulence. Thus the only in-
dexes permitted by these sum rules are those of KO. The
generalization of the indexes permitted by the 8 model
is ruled out by these considerations.

CONCLUSION

We found the exact relations of two types in the sta-
tistical theory of fully developed turbulence. In principle
these relations may be checked experimentally. They also
allow us to make some important conclusions about the
structure of statistical theory of turbulence. In particu-
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lar we showed that the scaling exponent of fully dressed
vertex of interaction Iy g~ (if it exists) is not renormal-
ized. Together with other exact relations it leads to the
Kolmogorov-Obukhov’s values of exponents of moments
of velocity differences, ¢, = n/3.

Existence of scaling exponent of vertex I' means that
this function is a uniform function in the inertial interval.
This is a natural assumption. However, one can assume
that 'y 3, and other three-point objects are not uniform
functions at arbitrary relations between their arguments.
It is not excluded that these functions are uniform only
if some relations are satisfied: at k; ~ ko ~ k3 they have
one set of exponents, whereas at k1 < kg ~ k3, etc. they
have other sets of exponents. This is the only way in

analytical theory of turbulence which may lead to multi-
fractality. We cannot reject this possibility, but postpone
the question about correspondence between multifractal
models of turbulence and the Navier-Stokes equation to
the future.
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